Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(8): 112875, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37542718

RESUMO

The success of Mycobacterium tuberculosis (Mtb) is largely attributed to its ability to physiologically adapt and withstand diverse localized stresses within host microenvironments. Here, we present a data-driven model (EGRIN 2.0) that captures the dynamic interplay of environmental cues and genome-encoded regulatory programs in Mtb. Analysis of EGRIN 2.0 shows how modulation of the MtrAB two-component signaling system tunes Mtb growth in response to related host microenvironmental cues. Disruption of MtrAB by tunable CRISPR interference confirms that the signaling system regulates multiple peptidoglycan hydrolases, among other targets, that are important for cell division. Further, MtrA decreases the effectiveness of antibiotics by mechanisms of both intrinsic resistance and drug tolerance. Together, the model-enabled dissection of complex MtrA regulation highlights its importance as a drug target and illustrates how EGRIN 2.0 facilitates discovery and mechanistic characterization of Mtb adaptation to specific host microenvironments within the host.


Assuntos
Mycobacterium tuberculosis , Fatores de Transcrição , Fatores de Transcrição/genética , Proteínas de Bactérias/genética , Divisão Celular , Tolerância a Medicamentos
2.
mSystems ; 8(1): e0090422, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36537814

RESUMO

There is an urgent need for strategies to discover secondary drugs to prevent or disrupt antimicrobial resistance (AMR), which is causing >700,000 deaths annually. Here, we demonstrate that tetracycline-resistant (TetR) Escherichia coli undergoes global transcriptional and metabolic remodeling, including downregulation of tricarboxylic acid cycle and disruption of redox homeostasis, to support consumption of the proton motive force for tetracycline efflux. Using a pooled genome-wide library of single-gene deletion strains, at least 308 genes, including four transcriptional regulators identified by our network analysis, were confirmed as essential for restoring the fitness of TetR E. coli during treatment with tetracycline. Targeted knockout of ArcA, identified by network analysis as a master regulator of this new compensatory physiological state, significantly compromised fitness of TetR E. coli during tetracycline treatment. A drug, sertraline, which generated a similar metabolome profile as the arcA knockout strain, also resensitized TetR E. coli to tetracycline. We discovered that the potentiating effect of sertraline was eliminated upon knocking out arcA, demonstrating that the mechanism of potential synergy was through action of sertraline on the tetracycline-induced ArcA network in the TetR strain. Our findings demonstrate that therapies that target mechanistic drivers of compensatory physiological states could resensitize AMR pathogens to lost antibiotics. IMPORTANCE Antimicrobial resistance (AMR) is projected to be the cause of >10 million deaths annually by 2050. While efforts to find new potent antibiotics are effective, they are expensive and outpaced by the rate at which new resistant strains emerge. There is desperate need for a rational approach to accelerate the discovery of drugs and drug combinations that effectively clear AMR pathogens and even prevent the emergence of new resistant strains. Using tetracycline-resistant (TetR) Escherichia coli, we demonstrate that gaining resistance is accompanied by loss of fitness, which is restored by compensatory physiological changes. We demonstrate that transcriptional regulators of the compensatory physiologic state are promising drug targets because their disruption increases the susceptibility of TetR E. coli to tetracycline. Thus, we describe a generalizable systems biology approach to identify new vulnerabilities within AMR strains to rationally accelerate the discovery of therapeutics that extend the life span of existing antibiotics.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Resistência a Tetraciclina/genética , Sertralina/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Tetraciclina/farmacologia , Proteínas da Membrana Bacteriana Externa/farmacologia , Proteínas Repressoras/farmacologia , Proteínas de Escherichia coli/genética
3.
Curr Drug Deliv ; 20(7): 978-991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35578876

RESUMO

BACKGROUND: Irinotecan is a promising antitumor agent approved by FDA for intravenous use in colon cancer treatment either alone or in combination. It is a topoisomerase inhibitor and by blocking the topoisomerase-I enzyme, it causes DNA damage and results in cell death. However, it lacks selectivity and specificity for tumor cells, resulting in systemic toxicity. Thus, it is essential to reduce its side effects and improve therapeutic efficacy. OBJECTIVE: The study aimed to improve the therapeutic efficacy and minimize the toxic effects of irinotecan by developing a fullerene functionalized biotin drug delivery system and adsorbing irinotecan on the surface of the functionalized fullerene-biotin complex. METHODS: Fullerene (C60) has been observed as a potential drug delivery agent and the aminefunctionalized C60-NH2 was synthesized by functionalizing ethylenediamine on the surface of C60. The PEI functionalized C60 was further synthesized by polymerization of aziridine on the surface of C60- NH2. Biotin was attached by an amide linkage to C60-PEI and the anti-colon cancer drug irinotecan (IRI) was encapsulated (C60-PEI-Biotin/IRI). The C60-PEI-Biotin/IRI was characterized and evaluated for in vivo anti-colon cancer activity in rats and the results were compared with the parent drug irinotecan. RESULTS: The results showed that C60-PEI-Biotin/IRI conjugate had a controlled release profile according to in vitro HPLC studies. Moreover in vivo anti-tumor studies suggested that the conjugate proved to be less toxic to vital organs and had high efficacy towards tumor cells. Statistical studies confirmed less tumor index and tumor burden in the case of conjugate when compared to irinotecan. CONCLUSION: It is hypothesized that the conjugate (C60-PEI-Biotin/IRI) could cross the cell membrane easily through overexpressed biotin receptors on the cell surface of colon cancer cells and showed better efficacy and less toxicity in comparison to IRI in the colon cancer rat model.


Assuntos
Neoplasias do Colo , Fulerenos , Ratos , Animais , Irinotecano , Fulerenos/farmacologia , Biotina , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico
4.
Anticancer Agents Med Chem ; 22(18): 3182-3192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35469577

RESUMO

BACKGROUND: Camptothecin is a naturally occurring alkaloid obtained from the stem wood of the Chinese tree, Camptotheca acuminata. It exerts pharmacological effects due to its ability to selectively inhibit the type-I topoisomerase DNA nuclear enzyme. Several semisynthetic analogs of camptothecin have been synthesized to date possessing antitumor activity. OBJECTIVE: Camptothecin (CPT) is one of the most promising anticancer drugs but it produces various side effects because of its non-selectivity towards cancer cells. To overcome these adverse effects, we synthesized biotin conjugate of camptothecin, which was linked via a self-immolative disulfide linker (CPT-SS-Biotin). METHODS: Biotin conjugated camptothecin linked through a disulfide bond was synthesized following schemes, and the structural characterization was carried out. The stability and drug release studies were performed in the presence of glutathione (GSH) while in vitro studies were performed on 4T1 tumor cell lines. In vivo pharmacological investigation was done using an antitumor Wistar rat model. RESULTS: The stability and drug release studies were performed in the presence of glutathione (GSH), and CPT-SSBiotin was found to be physiologically stable moiety and can only be cleaved in the presence of GSH to release free CPT. The CPT-SS-Biotin showed higher toxicity in the biotin-overexpressing 4T1 tumor cell line with a lower IC50 value (8.44 µM) compared to camptothecin alone (IC50 > 30 µM). CPT-SS-Biotin also showed 10.6% higher cellular uptake by cells in comparison to free camptothecin. The CPT-SS-Biotin was delivered to cells by binding to the biotin receptors on the cell surface, followed by energy-dependent endocytosis and internalization to cause cellular toxicity. CONCLUSION: In-vivo tumor suppression studies and in vitro cell line studies along with serological parameters and histopathological studies showed that conjugate produced a high therapeutic effect and remarkably reduced toxic effects in comparison to free CPT. The results suggested that biotinylation of camptothecin via disulfide linker can be a safe and efficacious method in cancer therapeutics.


Assuntos
Antineoplásicos , Camptotecina , Animais , Antineoplásicos/química , Biotina , Dissulfetos/química , Glutationa , Ratos , Ratos Wistar
5.
Mini Rev Med Chem ; 22(22): 2864-2880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35301947

RESUMO

Fullerenes are the allotropic form of carbon consisting of a cage-like structure due to which they have attained special attention from researchers since their discovery in 1985. The unique chemical and physical properties of fullerene have attracted researchers to develop a variety of its biomedical applications. The closed cage structure of fullerenes can be used for various drug delivery applications and can also act as a medium for controlled release formulations. The development of targeted anticancer drug and drug delivery systems is one of the most challenging fields, which is widely studied and researched. In this review, we aim to provide a comprehensive review on the most recent advances in fullerenes as targeted anticancer drug delivery systems along with their therapeutic applications and challenges, thus serving the pharmaceutical and biotechnology community.


Assuntos
Antineoplásicos , Fulerenos , Fulerenos/farmacologia , Fulerenos/química , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
6.
Forensic Sci Int ; 325: 110877, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34153555

RESUMO

In this study, the efficacy of dental tissues (cementum, dentine and pulp) and alveolar bone as a potential source of DNA was tested in terms of the quality and quantity using nuclear and mitochondrial markers for forensic investigation.This study found dentine as the best source of DNA with only 5.36% imbalanced (PHR<0.7) heterozygous loci. Pulp showed the highest quantity of DNA but exhibited 22.3% imbalanced (PHR<0.7) heterozygous loci. Cementum with highest (46.67%) heterozygote imbalance proved to be the last choice as a source of DNA. Alveolar bone exhibited the second-highest total yield of DNA/mg of tissue. All Global Filer™ STR loci were amplified in 70% samples of fresh alveolar bone whereas for 30% samples, only partial profile was generated along with successful sex determination. All the dental tissues and alveolar bone samples amplified non STR markers (D-loop, Cytochrome Oxidase I, SRY, AMEL). Of the alveolar bones from archival samples, one sample exhibited full STR profile whereas other alveolar bone samples gave partial profiles. This study substantiates alveolar bone as an alternate source of nuclear and mitochondrial DNA.


Assuntos
DNA/análise , Adulto , Idoso , Processo Alveolar/química , Impressões Digitais de DNA , Cemento Dentário/química , Polpa Dentária/química , Dentina/química , Feminino , Odontologia Legal , Genética Forense , Humanos , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase
8.
mSystems ; 5(6)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262242

RESUMO

Mycobacterium tuberculosis (MTB) generates phenotypic diversity to persist and survive the harsh conditions encountered during infection. MTB avoids immune effectors and antibacterial killing by entering into distinct physiological states. The surviving cells, persisters, are a major barrier to the timely and relapse-free treatment of tuberculosis (TB). We present for the first time, PerSort, a method to isolate and characterize persisters in the absence of antibiotic or other pressure. We demonstrate the value of PerSort to isolate translationally dormant cells that preexisted in small numbers within Mycobacterium species cultures growing under optimal conditions but that dramatically increased in proportion under stress conditions. The translationally dormant subpopulation exhibited multidrug tolerance and regrowth properties consistent with those of persister cells. Furthermore, PerSort enabled single-cell transcriptional profiling that provided evidence that the translationally dormant persisters were generated through a variety of mechanisms, including vapC30, mazF, and relA/spoT overexpression. Finally, we demonstrate that notwithstanding the varied mechanisms by which the persister cells were generated, they converge on a similar low-oxygen metabolic state that was reversed through activation of respiration to rapidly eliminate persisters fostered under host-relevant stress conditions. We conclude that PerSort provides a new tool to study MTB persisters, enabling targeted strategies to improve and shorten the treatment of TB.IMPORTANCE Mycobacterium tuberculosis (MTB) persists and survives antibiotic treatments by generating phenotypically heterogeneous drug-tolerant subpopulations. The surviving cells, persisters, are a major barrier to the relapse-free treatment of tuberculosis (TB), which is already killing >1.8 million people every year and becoming deadlier with the emergence of multidrug-resistant strains. This study describes PerSort, a cell sorting method to isolate and characterize, without antibiotic treatment, translationally dormant persisters that preexist in small numbers within Mycobacterium cultures. Characterization of this subpopulation has discovered multiple mechanisms by which mycobacterial persisters emerge and unveiled the physiological basis for their dormant and multidrug-tolerant physiological state. This analysis has discovered that activating oxygen respiratory physiology using l-cysteine eliminates preexisting persister subpopulations, potentiating rapid antibiotic killing of mycobacteria under host-relevant stress. PerSort serves as a new tool to study MTB persisters for enabling targeted strategies to improve and shorten the treatment of TB.

9.
Cell Rep ; 31(4): 107577, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32348771

RESUMO

Mycobacterium tuberculosis (MTB) displays the remarkable ability to transition in and out of dormancy, a hallmark of the pathogen's capacity to evade the immune system and exploit susceptible individuals. Uncovering the gene regulatory programs that underlie the phenotypic shifts in MTB during disease latency and reactivation has posed a challenge. We develop an experimental system to precisely control dissolved oxygen levels in MTB cultures in order to capture the transcriptional events that unfold as MTB transitions into and out of hypoxia-induced dormancy. Using a comprehensive genome-wide transcription factor binding map and insights from network topology analysis, we identify regulatory circuits that deterministically drive sequential transitions across six transcriptionally and functionally distinct states encompassing more than three-fifths of the MTB genome. The architecture of the genetic programs explains the transcriptional dynamics underlying synchronous entry of cells into a dormant state that is primed to infect the host upon encountering favorable conditions.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Mycobacterium tuberculosis/genética , Progressão da Doença , Humanos
10.
Mol Syst Biol ; 15(3): e8584, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833303

RESUMO

The success of Mycobacterium tuberculosis (MTB) stems from its ability to remain hidden from the immune system within macrophages. Here, we report a new technology (Path-seq) to sequence miniscule amounts of MTB transcripts within up to million-fold excess host RNA Using Path-seq and regulatory network analyses, we have discovered a novel transcriptional program for in vivo mycobacterial cell wall remodeling when the pathogen infects alveolar macrophages in mice. We have discovered that MadR transcriptionally modulates two mycolic acid desaturases desA1/desA2 to initially promote cell wall remodeling upon in vitro macrophage infection and, subsequently, reduces mycolate biosynthesis upon entering dormancy. We demonstrate that disrupting MadR program is lethal to diverse mycobacteria making this evolutionarily conserved regulator a prime antitubercular target for both early and late stages of infection.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Macrófagos/imunologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia , Adaptação Fisiológica , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Macrófagos/microbiologia , Camundongos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Ácidos Micólicos/metabolismo , Biologia de Sistemas , Tuberculose/imunologia
11.
Genome Biol Evol ; 9(6): 1616-1623, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854640

RESUMO

Adaptive prediction is a capability of diverse organisms, including microbes, to sense a cue and prepare in advance to deal with a future environmental challenge. Here, we investigated the timeframe over which adaptive prediction emerges when an organism encounters an environment with novel structure. We subjected yeast to laboratory evolution in a novel environment with repetitive, coupled exposures to a neutral chemical cue (caffeine), followed by a sublethal dose of a toxin (5-FOA), with an interspersed requirement for uracil prototrophy to counter-select mutants that gained constitutive 5-FOA resistance. We demonstrate the remarkable ability of yeast to internalize a novel environmental pattern within 50-150 generations by adaptively predicting 5-FOA stress upon sensing caffeine. We also demonstrate how novel environmental structure can be internalized by coupling two unrelated response networks, such as the response to caffeine and signaling-mediated conditional peroxisomal localization of proteins.


Assuntos
Evolução Biológica , Saccharomyces cerevisiae/genética , Adaptação Fisiológica , Cafeína/farmacologia , Aptidão Genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia , Fatores de Tempo
12.
Retina ; 37(2): 316-324, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27392097

RESUMO

PURPOSE: To report spectral domain optical coherence tomography features in central serous chorioretinopathy associated with subretinal fibrin. METHOD: Retrospective observational case series of patients with central serous chorioretinopathy with subretinal fibrin imaged with spectral domain optical coherence tomography. RESULT: Twenty-three eyes of 23 patients (19 males and 4 females), with mean age of 39.09 ± 5.8 years were included in the study. Subretinal fibrin clinically ranged from localized well-defined areas to extensive ill-defined areas. Along with the presence of subretinal hyperreflectivity (n = 23, 100%), corresponding to fibrin, spectral domain optical coherence tomography also revealed the presence of the retinal pigment epithelial (RPE) defects (n = 23, 100%) in all eyes with an adjacent well-defined hyporeflective vacuole. In 19 eyes wherein fundus fluorescein was performed, the RPE defects and vacuoles corresponded to the site of RPE leak. Serous pigment epithelial detachments (n = 18, 78.2%), multiple RPE defects in the same eye (n = 5), and multiple RPE defects in same pigment epithelial detachment (n = 1) were few other interesting features observed. CONCLUSION: The presence of a hyporeflective vacuole amid the hyperreflective fibrin adjacent to RPE defects probably indicates the site of constant fluid egress and is an important sign of disease activity especially in cases where fundus fluorescein angiography is not possible.


Assuntos
Coriorretinopatia Serosa Central/diagnóstico , Fibrina/análise , Epitélio Pigmentado da Retina/patologia , Tomografia de Coerência Óptica/métodos , Vacúolos/patologia , Adulto , Coriorretinopatia Serosa Central/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
13.
Nucleic Acids Res ; 45(1): 255-270, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-27899637

RESUMO

Genomic robustness is the extent to which an organism has evolved to withstand the effects of deleterious mutations. We explored the extent of genomic robustness in budding yeast by genome wide dosage suppressor analysis of 53 conditional lethal mutations in cell division cycle and RNA synthesis related genes, revealing 660 suppressor interactions of which 642 are novel. This collection has several distinctive features, including high co-occurrence of mutant-suppressor pairs within protein modules, highly correlated functions between the pairs and higher diversity of functions among the co-suppressors than previously observed. Dosage suppression of essential genes encoding RNA polymerase subunits and chromosome cohesion complex suggests a surprising degree of functional plasticity of macromolecular complexes, and the existence of numerous degenerate pathways for circumventing the effects of potentially lethal mutations. These results imply that organisms and cancer are likely able to exploit the genomic robustness properties, due the persistence of cryptic gene and pathway functions, to generate variation and adapt to selective pressures.


Assuntos
Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Divisão Celular , Biologia Computacional , Dosagem de Genes , Perfilação da Expressão Gênica , Genes Letais , Aptidão Genética , Mutação , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
BMC Syst Biol ; 8: 122, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25394904

RESUMO

BACKGROUND: Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment. RESULTS: We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions that mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively. CONCLUSIONS: This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Meio Ambiente , Duplicação Gênica/genética , Regulação da Expressão Gênica em Archaea/genética , Halobacterium salinarum/genética , Fatores de Transcrição/genética , Sítios de Ligação/genética , Halobacterium salinarum/metabolismo , Paraquat
16.
Mol Syst Biol ; 10: 740, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25028489

RESUMO

Microbes can tailor transcriptional responses to diverse environmental challenges despite having streamlined genomes and a limited number of regulators. Here, we present data-driven models that capture the dynamic interplay of the environment and genome-encoded regulatory programs of two types of prokaryotes: Escherichia coli (a bacterium) and Halobacterium salinarum (an archaeon). The models reveal how the genome-wide distributions of cis-acting gene regulatory elements and the conditional influences of transcription factors at each of those elements encode programs for eliciting a wide array of environment-specific responses. We demonstrate how these programs partition transcriptional regulation of genes within regulons and operons to re-organize gene-gene functional associations in each environment. The models capture fitness-relevant co-regulation by different transcriptional control mechanisms acting across the entire genome, to define a generalized, system-level organizing principle for prokaryotic gene regulatory networks that goes well beyond existing paradigms of gene regulation. An online resource (http://egrin2.systemsbiology.net) has been developed to facilitate multiscale exploration of conditional gene regulation in the two prokaryotes.


Assuntos
Redes Reguladoras de Genes , Genoma Microbiano , Modelos Genéticos , Algoritmos , Escherichia coli/genética , Regulação da Expressão Gênica , Aptidão Genética , Halobacterium salinarum/genética , Óperon , Elementos Reguladores de Transcrição , Regulon
17.
Opt Lett ; 38(22): 4609-12, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24322086

RESUMO

In this Letter, we report on a fiber-optic Fabry-Perot interferometric pressure sensor with its external diaphragm surface thinned and roughened by a femtosecond laser. The laser-roughened surface helps to eliminate outer reflections from the external diaphragm surface and makes the sensor immune to variations in the ambient refractive index. The sensor is demonstrated to measure pressure in a high-temperature environment with low-temperature dependence.

18.
PLoS Comput Biol ; 9(1): e1002880, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349626

RESUMO

Copper (Cu) is an important enzyme co-factor that is also extremely toxic at high intracellular concentrations, making active efflux mechanisms essential for preventing Cu accumulation. Here, we have investigated the mechanistic role of metallochaperones in regulating Cu efflux. We have constructed a computational model of Cu trafficking and efflux based on systems analysis of the Cu stress response of Halobacterium salinarum. We have validated several model predictions via assays of transcriptional dynamics and intracellular Cu levels, discovering a completely novel function for metallochaperones. We demonstrate that in addition to trafficking Cu ions, metallochaperones also function as buffers to modulate the transcriptional responsiveness and efficacy of Cu efflux. This buffering function of metallochaperones ultimately sets the upper limit for intracellular Cu levels and provides a mechanistic explanation for previously observed Cu metallochaperone mutation phenotypes.


Assuntos
Cobre/metabolismo , Metalochaperonas/fisiologia , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Halobacterium salinarum/metabolismo , Halobacterium salinarum/fisiologia , Homeostase , Transporte de Íons , Espectrometria de Massas , Metalochaperonas/genética , Modelos Teóricos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Transcrição Gênica
19.
J Bacteriol ; 193(7): 1653-62, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21278285

RESUMO

Oxidative stress occurs when the generation of reactive oxygen species (ROS) exceeds the capacity of the cell's endogenous systems to neutralize them. Our analyses of the cellular damage and oxidative stress responses of the archaeon Halobacterium salinarum exposed to ionizing radiation (IR) revealed a critical role played by nonenzymatic antioxidant processes in the resistance of H. salinarum to IR. ROS-scavenging enzymes were essential for resistance to chemical oxidants, yet those enzymes were not necessary for H. salinarum's resistance to IR. We found that protein-free cell extracts from H. salinarum provided a high level of protection for protein activity against IR in vitro but did not protect DNA significantly. Compared with cell extracts of radiation-sensitive bacteria, H. salinarum extracts were enriched in manganese, amino acids, and peptides, supporting an essential role in ROS scavenging for those small molecules in vivo. With regard to chemical oxidants, we showed that the damage caused by gamma irradiation was mechanistically different than that produced by hydrogen peroxide or by the superoxide-generating redox-cycling drug paraquat. The data presented support the idea that IR resistance is most likely achieved by a "metabolic route," with a combination of tightly coordinated physiological processes.


Assuntos
Antioxidantes/metabolismo , Halobacterium/metabolismo , Halobacterium/efeitos da radiação , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meios de Cultura , Halobacterium/citologia , Mutação , Estresse Oxidativo , Radiação Ionizante , Espécies Reativas de Oxigênio
20.
Mol Syst Biol ; 6: 393, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20664639

RESUMO

Complexity of cellular response to oxidative stress (OS) stems from its wide-ranging damage to nucleic acids, proteins, carbohydrates, and lipids. We have constructed a systems model of OS response (OSR) for Halobacterium salinarum NRC-1 in an attempt to understand the architecture of its regulatory network that coordinates this complex response. This has revealed a multi-tiered OS-management program to transcriptionally coordinate three peroxidase/catalase enzymes, two superoxide dismutases, production of rhodopsins, carotenoids and gas vesicles, metal trafficking, and various other aspects of metabolism. Through experimental validation of interactions within the OSR regulatory network, we show that despite their inability to directly sense reactive oxygen species, general transcription factors have an important function in coordinating this response. Remarkably, a significant fraction of this OSR was accurately recapitulated by a model that was earlier constructed from cellular responses to diverse environmental perturbations--this constitutes the general stress response component. Notwithstanding this observation, comparison of the two models has identified the coordination of frontline defense and repair systems by regulatory mechanisms that are triggered uniquely by severe OS and not by other environmental stressors, including sub-inhibitory levels of redox-active metals, extreme changes in oxygen tension, and a sub-lethal dose of gamma rays.


Assuntos
Proteínas Arqueais/metabolismo , Halobacterium salinarum/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Arqueais/genética , Carotenoides/metabolismo , Catalase/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica em Archaea , Genótipo , Halobacterium salinarum/efeitos dos fármacos , Halobacterium salinarum/enzimologia , Halobacterium salinarum/genética , Halobacterium salinarum/crescimento & desenvolvimento , Peróxido de Hidrogênio/farmacologia , Modelos Biológicos , Mutação , Oxidantes/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Paraquat/farmacologia , Peroxidases/metabolismo , Fenótipo , Transporte Proteico , Rodopsinas Microbianas/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Fatores de Tempo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA